К сожалению, сайт не работает без включенного JavaScript. Пожалуйста, включите JavaScript в настройках вашего броузера.
Наш канал в Telegram
Самое важное о финансах, инвестициях, бизнесе и технологиях
Подписаться

Новости

«Вакцина будет к началу 2021 года»: интервью с иммунологом, который прямо сейчас создает прививку от COVID-19

Фото DR
Фото DR
Иммунолог Полина Делетич, дочь экономиста Андрея Мовчана, входит в международную рабочую группу Imperial College, которая участвует в гонке по созданию вакцины от нового коронавируса. Она рассказала Forbes Woman, как проходит работа над будущей прививкой, можно ли заразиться вирусом повторно и что представляет собой иммунитет человека. А также развенчала некоторые интернет-мифы о новой болезни

Как вы попали в группу по работе над вакциной? Расскажите о своей специализации и профессиональной истории.

Мне всегда хотелось поработать с вакцинами, так как, на мой взгляд, это очень изящный способ использовать болезнь в борьбе с ней же. Я закончила факультет фундаментальной медицины МГУ по специальности «лечебное дело». Курсовую и дипломную работу я писала на базе ИМБ им. В. А. Энгельгардта в лаборатории Петра Михайловича Чумакова, работая над онколитическими вирусами. Через год после окончания университета меня приняли в магистратуру Imperial College London по специальности «Иммунология». В декабре 2019 года я познакомилась с профессором Робином Шэттоком, а с середины февраля начала работать над проектом в лаборатории под его руководством. Профессор Шэтток возглавляет научно-консультативный комитет международного сотрудничества по изучению микробицидных препаратов, а также является членом научно-консультативного совета по борьбе с глобальной эпидемией ВИЧ.  Помимо этого, он заведует лабораторией по изучению инфекций и иммунитета слизистых оболочек в Imperial College London, где началась моя научная работа. В середине февраля вся группа срочно переориентировалась на работу над вакциной против COVID-19 и сейчас уже начала испытание на животных. На ближайшее время основной задачей лаборатории будет работа над вакциной.

 

Кто еще входит в группу? 

В основную рабочую группу входят 28 человек, включая руководителей проектов, специалистов по клиническим исследованиям и PhD студентов. В нашей команде Пол Маккэй, один из руководителей проектов, который работал с исследователями в Harvard Medical School и Beth Israel Deaconess Medical Centre; доктор Джон Трегонинг, который изучает инфекции респираторного тракта; Анна Блэкни, которая закончила университет Вашингтона по специальности «биоинженерия» и работала над вакциной БЦЖ. Последний год лаборатория активно занималась исследованием вакцин на основе генетического материала (ДНК и РНК), но сейчас, конечно, все силы брошены на разработку вакцины против COVID-19.

 

Прежде чем мы перейдем к вопросу о вакцине непосредственно от коронавируса: если говорить простым языком каков принцип работы прививок? 

Вакцины принято делить на живые (MMR/ротавирус), состоящие из живых ослабленных возбудителей болезни, инактивированные (гепатит А, бешенство, грипп), которые включают в себя фрагменты бактерий или вирусов, анатоксины (столбняк/коклюш/ дифтерия), из специальным образом обработанных токсинов бактерий и вакцины на основе генетического материала.

Стратегия вакцинации основана на существовании феномена иммунологической памяти. Это значит, что при повторной встрече с вирусом или бактерией клетки иммунной системы начинают вырабатывать антитела, направленные против данного инфекционного агента (антигена). Это позволяет быстро обезвредить вирус или бактерию и предотвратить повторное развитие болезни. В этой игре вакцина обеспечивает первое знакомство иммунной системы с антигеном. Вакцина должна быть сконструирована таким образом, чтобы иммунная система распознала ее как инфекцию и начала борьбу с этим патогеном. Именно поэтому, повышение температуры тела является побочным эффектом некоторых, в основном живых, прививок.

 

Как устроен процесс разработки вакцины? Как будет выглядеть прививка от коронавируса?

Сегодня в условиях COVID-19 большая часть лабораторий работает над вакцинами на основе вирусного генетического материала, на основе фрагментов вирусов (как правило, поверхностных белков) и на основе вирусных векторов (генетически модифицированные вирусы, способствующие синтезу только определенных патогенных белков).

В нашей лаборатории мы разрабатываем вакцину, основным компонентом которой является вирусная РНК. Это значит, что препарат не содержит ни ослабленный вирус, ни его структурные элементы. Мы используем не всю генетическую информацию вируса, а только тот фрагмент РНК, который кодирует поверхностный S-белок. Введенный в организм фрагмент вирусного генома попадает в клетку. В результате клетка сама синтезирует большое количество S-белка, против которого начинает работать иммунная система. Обычно формирование иммунитета занимает около 2 недель. Таким образом, следующая встреча с вирусом приведет к немедленному уничтожению клетками иммунной системы, что не даст болезни развиваться.

Наша технология позволяет существенно снизить дозу необходимого препарата. Это позволит не только сократить финансовые расходы, но и сделать гораздо больше вакцин, доступных для большего количества людей. Обычно в организме человека одна молекула РНК служит матрицей для одной молекулы белка. Таким образом, стандартная РНКовая вакцина должна содержать большую дозу РНК.  В нашей вакцине, мы используем РНК, которая способна к самовоспроизведению. В результате одной молекулы РНК достаточно для создания большого количества S-белков, а значит, доза, необходимая для одной вакцины значительно снижается.

Верно ли я понимаю, что сейчас несколько стран делают свои версии вакцин параллельно друг другу? 

 

На сегодняшний день в мире более 35 лабораторий усиленно работают над вакциной против COVID-19. Исследователи общаются между собой и делятся информацией, но у каждой лаборатории свой подход и свои технологии. Это не соревнование между лабораториями, это состязание нас — как человечества — с вирусом, и в наших общих интересах как можно быстрее найти наиболее эффективный способ его победить.

Неизвестно, какая технология даст лучший результат. Часть из них не пройдут испытания, часть придется модифицировать, и они выйдут на рынок позже.

Иммунитет — это головоломка, которую ученые продолжают разгадывать. Иммунная система каждого человека индивидуальна, и именно поэтому кто-то переносит болезнь легко, а кому-то требуется госпитализация. Каждая возрастная группа обладает своими иммунологическими особенностями. Мы пока не знаем, какая стратегия окажется наиболее эффективной для той или иной группы людей и какая вакцина подойдет для широкого использования. Важно, что, работая все вместе, мы прилагаем максимум усилий, чтобы найти вакцину и сделать ее доступной в максимально короткие сроки.

Фото Vincent Kalut·Photonews via Getty Images

Сколько времени уходит обычно на разработку и тестирование новой вакцины? Какие есть этапы у этого процесса? 

 

В нормальной ситуации разработка и утверждение вакцины может занять до 10 лет. Например, на создание вакцины против лихорадки Эбола ушло почти 6 лет. Работа над вакциной началась в 2014 году, а в ноябре 2019 года Европейская комиссия одобрила выпуск вакцины Ervebo на широкий европейский рынок.

Первый этап, включающий в себя исследование и выбор метода, может длиться годами. Подробный анализ результатов работы других исследователей в конкретной области служит базой для создания дизайна нового проекта. Когда проект готов, на разработку препарата требуется от нескольких недель до нескольких месяцев, в зависимости от вида вакцины. Производство вакцины на основе генетического материала требует сравнительно мало времени. Сначала на основе известного генетического кода модель проектируют в компьютерной программе, после чего синтез вакцины занимает примерно неделю.

После изготовления вещества начинаются проверки. Глобально процесс тестирования можно разделить на два этапа: доклинические исследования и испытания на людях. К доклиническим исследованиям относятся исследования in vitro на клеточных культурах и испытания на животных моделях. Обычно для этого используют лабораторных мышей, хорьков и человекоподобных приматов (макак). Испытания на животных позволяют с минимальными затратами выявить серьезные  побочные реакции и определить эффективность препарата.

«Основная проблема на сегодняшний день в том, что система здравоохранения не готова к такому количеству пациентов, которым необходима госпитализация«

Обычно это занимает от нескольких месяцев до нескольких лет. В спокойной обстановке у исследователей есть время на то, чтобы пробовать новые методики, придумывать, как модифицировать и совершенствовать препарат. Но в экстремальных условиях все пытаются максимально сократить сроки. Наша и многие другие лаборатории уже начали испытывать свои препараты на животных. Все работают над тем, чтоб как можно быстрее начать клинические испытания на людях.

 

Как проводятся испытания на человеке? 

Испытания на человеке обычно состоят из трех фаз:

1-я фаза проводится на малой группе волонтеров (от 20 до 100 человек) и занимает примерно 3 месяца. На этом этапе главный вопрос — это безопасность применения вакцины для человека и наличие серьезных побочных эффектов.

2-я фаза включает в себя несколько сотен человек, и здесь мы проверяем эффективность препарата и иммунную реакцию. На данном этапе также пытаются определить оптимальную дозу препарата.

 

В 3-й фазе участвуют уже десятки тысяч человек. Как правило, это слепые исследования, в которых сравнивают иммунную реакцию людей, получивших настоящий препарат и плацебо.

Как правило, на клинические испытания отводят 2-4 года, но в условиях эпидемии большинство ученых надеются получить необходимые результаты за 12-18 месяцев.

Как можно ускорить этот процесс? 

Есть несколько способов. В условиях эпидемии нет времени на изучение новых методик. Для создания нового препарата многие ученые работают на хорошо исследованных ранее платформах, которые они использовали для производства других вакцин. Это также позволяет им принять решение по сокращению испытаний на животных. Также есть возможность немного сократить и клинические исследования. Если вторая фаза клинических испытаний проводится на достаточно большом количестве добровольцев, препарат показывает высокую эффективность и минимальные побочные эффекты, комиссия может одобрить начало масштабного производства препарата одновременно с началом третьей фазы исследований.

 

Как вы предполагаете, когда ориентировочно (в России или другой стране) появится первая вакцина от коронавируса? 

Об этом очень сложно говорить, потому что мы не можем сейчас утверждать, какая из вакцин пройдет все испытания. Неделю назад американская компания (Moderna) начала первую фазу клинических испытаний. Многие лаборатории планируют начало исследований на людях на конец мая. При идеальном раскладе к началу 2021 года можно будет начать широкое производство.

Но не надо забывать, что весь процесс зависит не только от качества и эффективности препарата. Разработка новой вакцины — это как производство автомобиля. Кто-то работает над двигателем, кто-то разрабатывает дизайн, а кто-то проводит краш-тест, но все ответственны за конечный результат. Так и с прививками: в одной компании надо заказать реагенты, другая фирма предоставит животных для испытаний, о проведении испытаний на людях надо договариваться с больницами и, конечно, все зависят от финансирования. Нередко бывает, что эти фирмы и компании находятся в разных странах, а карантин и прочие ограничительные меры могут играть не в нашу пользу. Мы все рассчитываем друг на друга и задержка на любом этапе удлиняет весь процесс.

Есть мнение, что к моменту создания первой вакцины вирус уже мутирует и от нового штамма прививка будет неэффективна. Оправданны ли эти опасения?

 

Вирион (вирусная частица) коронавирусов представляет собой генетический материал (РНК), окруженный липидной оболочкой, в которую встроены несколько структурных белков. Так называемую «корону» обеспечивает S-белок. Это тот самый белок, с которым в первую очередь встречаются клетки иммунной системы и начинают синтезировать антитела против него.

Все разрабатываемые на сегодняшний день вакцины способствуют формированию иммунитета именно против S-белка. Те мутации, которые происходят с вирусом «быстро», не затрагивают этот белок. Поэтому с точки зрения иммунизации вирус достаточно стабилен.

Фото Vincent Kalut·Photonews via Getty Images

Как вы считаете, принимаемые сейчас в России меры для сдерживания распространения вируса достаточные?

Карантинные меры меняются каждый день. В России еще на прошлой неделе можно было свободно пойти в торговый центр. Несколько дней назад закрыли всевозможные места большого скопления людей и ограничили въезд для иностранных граждан, а уже сегодня для всех жителей Москвы независимо от возраста введен режим самоизоляции. Пока рано делать выводы, но кажется, что достаточно серьезные карантинные меры работают. В Ухане уже некоторое время нет новых случаев, в нескольких странах, где введен карантин, количество подтвержденных новых случаев болезни продолжает расти, но с меньшей интенсивностью. Тем не менее неизвестно, как будет меняться эпидемиологическая ситуация, когда города и страны начнут открывать границы.

 

Лучшим способом не заболеть и не заразить себя и своих близких будет соблюдать рекомендации, максимально ограничить выход на улицу и соблюдать дистанцию между людьми.

В интернете сейчас достаточно предсказуемо, к сожалению много спекуляций на тему коронавируса. Некоторые апеллируют к статистике и говорят о том, что новый вирус не более заразен, чем сезонный грипп, и паника «накручена». Что на самом деле говорит статистика? 

Вирус достаточно заразный. Инфицирующая способность вируса определяется базовым репродуктивном числом (R0).  R0 показывает количество человек, которое может заразить один инфицированный, при условии, что все могут заразиться. К примеру, у кори R0=18, у вируса гриппа R0=1.6, R0 для SARS Cov-2, по разным данным, равен 2.3-2.8. Это значит, что вероятность заболеть сезонным гриппом, если вы не делали прививку, примерно в 1.5 раза меньше.

Основная проблема на сегодняшний день в том, что система здравоохранения не готова к такому количеству пациентов, которым необходима госпитализация.

Несмотря на то, что многие переносят этот вирус достаточно легко, нам не стоит пренебрегать карантином. В условиях эпидемии мы отвечаем друг за друга. Молодые люди ответственны за то, чтобы не распространять инфекцию и не заразить тех, для кого это может стать фатальным. Люди из группы риска ответственны за то, чтобы не подвергать себя опасности и не увеличивать нагрузку на врачей, которые вынуждены работать на износ.

 
«В условиях эпидемии мы отвечаем друг за друга»

Есть ли у ученых сейчас понимание того, вырабатывается ли иммунитет к коронавирусу?

Одной из главных функций иммунитета является способность организма быстро и активно вырабатывать так называемые «антитела» — специфические белковые соединения, которые уничтожают или препятствуют размножению патогенных микроорганизмов и/или нейтрализуют вырабатываемые ими токсины. При первой встрече с инфекционным агентом на формирование иммунитета требуется около 2 недель. Антитела со временем распадаются, но после выздоровления в организме сохраняются специфические клетки памяти, которые при повторном заражении возобновляют активный синтез антител.

Клетки памяти могут жить в организме достаточно долго. Например, клетки памяти, направленные на выработку антител против черной оспы, сохранялись в крови у пациента иногда более 60 лет: в среднем от 15 до 30 лет. Но большинство клеток памяти со временем деградируют. Поэтому, прививки, сделанные в детском возрасте не являются гарантией защиты от инфекции для взрослого человека.

«Мы не можем себе позволить «дать» популяции переболеть»

Иммунная память к ОРВИ и вирусу гриппа тоже существует. В мире очень много разных ОРВИ и по мере взросления мы приобретаем иммунитет против них, поэтому чем старше мы становимся, тем реже болеем «простудой».  Особенностью же вируса гриппа является высокая способность к мутациям. Именно из-за мутаций прошлогодние вакцины против нового сезонного вируса гриппа зачастую оказываются малоэффективными — вирус уже «не тот».

 

Лабораторным признаком формирования стойкого долговременного иммунитета после перенесенной инфекции является наличие в плазме крови специфических иммуноглобулинов группы G. Мы уже точно знаем, что в ответ на SARS-CoV-2 организм человека вырабатывает иммунитет. Данные из Китая и Австралии говорят о том, что в крови у выздоровевших пациентов выявляется достаточно высокий титр антител G. Эксперименты in vitro подтверждают, что концентрация антител достаточная, чтобы обезвредить вирус. Мы с уверенностью можем сказать, что у этих пациентов сформировался иммунитет и в ближайшие несколько месяцев они не могут заболеть повторно.

Информация о длительном иммунитете против SARS-CoV-2 сегодня существует лишь в виде предположений, основанных на исследованиях после предыдущих эпидемий коронавирусов (SARS-CoV и MERS). Обе эпидемии давали переболевшим стойкий иммунитет, который сохранялся на протяжении нескольких лет. У нас есть основания полагать, что инфекция SARS-Cov2 тоже дает выздоровевшим людям длительную иммунную защиту — но эти основания не достаточны для уверенного утверждения.

В новостях была информация о случаях повторного заражения

О случаях дважды подтвержденной тяжелой формы коронавирусной инфекции я не слышала. К сожалению, сегодня в СМИ и соцсетях распространяется слишком много непроверенной и ложной информации. Но если так называемые «случаи повторного заражения» действительно имели место, то скорее всего они были связаны либо с присоединением бактериальной инфекции, либо с заражением другим ОРВИ – но не с реальным вторым заболеванием COVID-19. Надо также сказать, что теоретически может случиться и быстрое повторное заражение, но это будет большой редкостью и, скорее всего, будет связано с индивидуальной патологией иммунной системы.

 

Вы абсолютно верно отметили распространение непроверенной информации через соцсети. Периодически появляются посты на тему, какие болезни дают иммунитет к коронавирусу. Например, есть мнение, что нельзя заболеть им, если у тебя ранее была пневмония. Эти рассуждения не более чем некомпетентные догадки или действительно могут быть заболевания, потенциально дающие иммунитет от нового вируса? 

Глобальные события всегда связаны с появлением огромного количества непроверенной, неподтвержденной и неправильной информации. На официальном сайте ВОЗ в отделе, посвященном новой эпидемии, есть специальная секция, в которой рассказывают о мифах и фейковых новостях о COVID-19. Всем, кто сомневается в адекватности той или иной информации, я бы посоветовала обратиться к этому сайту и проверить.

Что касается «перекрестного иммунитета», к сожалению, эта информация не соответствует действительности. Специфический иммунитет всегда направлен на борьбу с определенным инфекционным агентом. Пневмонией называют воспаление легочной ткани, которую могут вызывать самые разные микроорганизмы  — вирусы, бактерии и реже грибы. После перенесенной пневмонии иммунитет может сформироваться только к тому возбудителю, который был причиной заболевания.

Вирус, с которым мы имеем дело сегодня, новый для человечества. Люди раньше им не болели, поэтому не могли выработать против него иммунную защиту. Есть логичное предположение, что люди, которые в 2003 году перенесли SARS-CoV, устойчивы к новой инфекции. Это можно объяснить тем, что SARS-Cov и SARS-Cov-2 имеют почти 80% геномной идентичности. Тем не менее, тот факт, что эпидемия SARS-CoV , была более 15 лет назад, а количество заболевших немногим превысило восемь тысяч, говорит о том, что эти данные не играют большой роли с точки зрения коллективной защиты.

 
«Сегодняшнюю эпидемию можно было бы предотвратить, если бы в свое время была создана вакцина от SARS-CoV»

Важный вывод, который стоит сделать из этого, заключается в том, что сегодняшнюю эпидемию можно было бы предотвратить, если бы в свое время была создана вакцина от SARS-CoV. Но работа по изучению SARS-Cov была приостановлена. Спонсирующие организации, фармацевтические компании и ученые переориентировались на работу над другими «более актуальными» на тот момент проблемами — было решено, что малое число заболевших и низкая контагиозность вируса не позволят получить коммерческой выгоды от средств против этого возбудителя. Сегодня мы понимаем, что наличие эффективного лечения и вакцины могло бы существенно облегчить симптомы COVID-19 и спасти жизни.

Может ли вирус исчезнуть сам собой (то есть все заразившиеся будут либо вылечены, либо умрут и новых случаев не будет) или это тоже из разряда фантастики и вирус никуда сам по себе не денется? 

Обычно так и проходят эпидемии. Для того, чтобы вирус перестал активно циркулировать в популяции, им должны переболеть более 70% всех людей. Тогда будет сформирован коллективный иммунитет, и, если мы предполагаем, что иммунитет длительный, они не смогут заболеть повторно. Таким образом, у вируса будет гораздо меньше потенциальных жертв — а значит, коэффициент передачи снизится до уровней, при которых эпидемия сходит на нет сама собой.

Есть предположение о том, что климатические условия могут влиять на распространение вируса (по аналогии с ОРВИ, которые значительно хуже распространяются в летнее время). Если это окажется правдой, то летний сезон должен был бы оказаться дополнительным фактором снижения коэффициента передачи, и вместе с развитием иммунитета у растущего числа людей это помогло бы свести эпидемию на нет. Но научного подтверждения этому пока нет. Мы видим, что сегодня вирус активно распространяется во всех частях света вне зависимости от погоды.

 

У «коллективного иммунитета», как его называют ученые, есть и еще одно преимущество. При подтверждении высокого уровня антител против SARS-CoV2, их носители смогут работать в обычном режиме, что позволит не нарушать нормальной жизни даже при новых вспышках эпидемии.

К сожалению, сегодня подавляющее большинство населения не защищено иммунитетом — у нас пока даже нет общедоступного серологического анализа, позволяющего определить уровень антител G. И что еще хуже, мы не можем себе позволить «дать» популяции переболеть: вирус слишком тяжелый для некоторых групп населения, неконтролируемое распространение его приведет к перегрузке системы здравоохранения и многочисленным жертвам. Поэтому для нас очень важно соблюдать карантинные меры, чтобы не быть потенциальным переносчиком инфекции и снизить нагрузку на систему здравоохранения.

Сейчас в Москве появилась возможность сдать тест на коронавирус по собственной инициативе, платно. Есть ли смысл это делать, если у тебя нет симптомов? 

Тестовая система на COVID-19 основана на принципе полимеразной цепной реакции (ПЦР), которая позволяет определить наличие и количество вирусной РНК.

 

Отрицательный результат может свидетельствовать о трех ситуациях. Человек либо здоров, либо находится в инкубационном периоде, либо переносит болезнь бессимптомно.

Если человек здоров, отрицательный анализ сегодня не даст гарантии, что он/она не заболеет завтра. Отрицательный результат теста может ошибочно дать людям уверенность, что они не могут заболеть и карантинными мерами можно пренебречь. Это не так. Любой человек, не имеющий специфического иммунитета, может заболеть COVID-19.

«Если человек здоров, отрицательный анализ сегодня не даст гарантии, что он/она не заболеет завтра»

Инкубационный период — это время от момента заражения до проявления первых симптомов болезни. Согласно данным центра по контролю и профилактике заболеваний США, инкубационный период при COVID-19 занимает от 2 до 14 дней. На сегодняшний день нет подтвержденных данных о том, что во время инкубационного периода человек заразен и выделяет большое количество вирусных частиц, превышающее порог чувствительности теста. Это значит, что анализ, выполненный на следующий день после заражения, как и за день до появления симптомов, скорее всего, даст ложный отрицательный результат. Поэтому для людей, находящихся в инкубационном периоде такой анализ не информативен.

Появление в лаборатории человека с бессимптомной формой заболевания может быть опасным для всех, кто будет стоять с ним/ней в одной очереди. Прежде чем пациент с бессимптомной формой получит положительный результат и сядет дома на самоизоляцию, он/она успеет передать этот вирус тем, для кого течение болезни окажется гораздо более тяжелым. Кроме того, возможность прийти в такую очередь за анализом может привлечь и людей с симптомами. Таким образом, очередь на такой анализ может быть отличным местом для распространения инфекции.

 

В случае, если у человека появились симптомы и согласно рекомендациям он имеет право на проведение анализа, а тестирование по той или иной причине откладывается, он может воспользоваться услугами такой лаборатории. Естественно, в этом случае анализ надо брать на дому с соблюдением необходимых правил защиты. На мой взгляд, это единственная ситуация, при которой сдать такой анализ платно было бы разумно.

Мы в соцсетях:

Мобильное приложение Forbes Russia на Android

На сайте работает синтез речи

иконка маруси

Рассылка:

Наименование издания: forbes.ru

Cетевое издание «forbes.ru» зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций, регистрационный номер и дата принятия решения о регистрации: серия Эл № ФС77-82431 от 23 декабря 2021 г.

Адрес редакции, издателя: 123022, г. Москва, ул. Звенигородская 2-я, д. 13, стр. 15, эт. 4, пом. X, ком. 1

Адрес редакции: 123022, г. Москва, ул. Звенигородская 2-я, д. 13, стр. 15, эт. 4, пом. X, ком. 1

Главный редактор: Мазурин Николай Дмитриевич

Адрес электронной почты редакции: press-release@forbes.ru

Номер телефона редакции: +7 (495) 565-32-06

На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети «Интернет», находящихся на территории Российской Федерации)

Перепечатка материалов и использование их в любой форме, в том числе и в электронных СМИ, возможны только с письменного разрешения редакции. Товарный знак Forbes является исключительной собственностью Forbes Media Asia Pte. Limited. Все права защищены.
AO «АС Рус Медиа» · 2024
16+